Well-ordered nanostructure SiC ceramic derived from self-assembly of polycarbosilane-block-poly(methyl methacrylate) diblock copolymer.
نویسندگان
چکیده
The fabrication of SiC ceramic materials with an ordered nanostructure through the direct pyrolysis of a self-assembled inorganic-organic block copolymer has generally been unsuccessful even though the versatile processibility has been demonstrated with organic-organic block copolymers. Here we report the synthesis of a novel polycarbosilane-block-poly(methyl methacrylate) diblock copolymer through ring-opening living anionic polymerization in a THF and n-hexane solvent system at -48 degrees C. The resulting block copolymer exhibited phase-separation behavior on the nanoscale to form a self-assembled nanostructure that was converted to a mesoporous ceramic after heating at 800 degrees C. The characterization of diblock copolymer is simultaneously investigated by GPC, and NMR analyses. The self-assembly of diblock copolymer is characterized by small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). In particular, the preparation of high-temperature-stable nanostructured silicon carbide and mesoporous silicon carbide ceramic directed from cross-linked polycarbosilane blocks with a high ceramic yield are described, which exhibits well-oriented nanostructures with the size in a range of 4-10 nm. These exciting results have a great potential to open a new field for the generation of nanostructured non-oxide ceramic or metal-ceramic materials for a broad class of applications.
منابع مشابه
Thin Film Morphology of Block Copolymer Blends with Tunable Supramolecular Interactions for Lithographic Applications
A modular and hierarchical self-assembly strategy using block copolymer blends (AB/B’C) with tunable supramolecular interactions is reported. By combining supramolecular assembly of hydrogenbonding units with controlled phase separation of diblock copolymers, highly ordered square arrays or hexagonal arrays of cylindrical domains were obtained formixtures of poly(ethylene oxide)-b-poly(styrene-...
متن کاملThermo-Induced Self-Assembly of Responsive Poly(DMAEMA-<italic>b</italic>-DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles
A series of thermoresponsive diblock copolymers of poly[2-(dimethylamino)ethyl methacrylate-block-di(ethyleneglycol) methyl ether methacrylate], poly(DMAEMA-b-DEGMA), were synthesized by reversible addition−fragmentation chain transfer (RAFT) polymerizations. The series consist of diblock and quasi diblock copolymers. Sequential monomer addition was used for the quasi diblock copolymer synthesi...
متن کاملDirected self-assembly of cylinder-forming diblock copolymers on sparse chemical patterns.
Using both theory and experiment, we investigate the possibility of creating perfectly ordered block copolymer nanostructures on sparsely patterned substrates. Our study focuses on scrutinizing the appropriate pattern conditions to avoid undesired morphologies or defects when depositing cylinder-forming AB diblock copolymer thin films on the substrates which are mostly neutral with periodic str...
متن کاملDefect-free nanoporous thin films from ABC triblock copolymers.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled liv...
متن کاملNanoscale protein patterning using self-assembled diblock copolymers.
Novel methods for immobilizing proteins on surfaces have the potential to impact basic biological research as well as various biochip applications. Here, we demonstrate a unique method to pattern proteins with a nanometer periodicity on silicon oxide substrates using microphase-separated diblock copolymer thin films. We developed a straightforward and effective protein immobilization technique ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2008